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Abstract 

With growing process complexity and the increasing number of process steps, early prediction of 

device performance has become an important task in semiconductor manufacturing process control. 

Machine learning (ML) techniques allow us to link in-line measurements to End-Of-Line (EOL) 

electrical tests. In our paper, we use reflectance spectra obtained from the scatterometry tool to 

predict both metal-line resistance and capacitance. We used IMEC N-14 process flow with LELE 

EUV double patterning at the M1 stage. Special designs-of-experiments (DOE) for multiple 

parameters allowed us to create a metrology solution for the entire process window and test its 

accuracy for all POI. Induced variations of both line CDs and space CDs, together with specially 

designed measurement sites, created wide variations both in metal-line resistance and capacitance. 

Reflectance spectra were collected in-line at two process steps defining metal lines: HM etch and Cu 

CMP at multiple targets, including E-test measurement sites, together with reference metrology for 

overlay (OV) and CD (by using Diffraction-Based-Overlay (DBO) and CD SEM). EOL MT1 

electrical test results were used for the ML training procedure for early prediction of patterning 

effects (both CD and OL) on electrical performance enabling early decisions and cost reduction by 

discarding out-of-spec wafers before they reached the electrical test. It was shown that ML OCD 

predictive techniques are complimentary to the OCD model-based solutions for geometrical 

parameters widely used for in-line APC. 

1. Introduction

The continuous shrinkage of device features has resulted in process costs at different steps

(litho, etch, deposition, CMP) becoming more and more prohibitive unless extremely high yields are 

achieved. The advanced technology nodes require tight process control and accurate CD 

measurements. Metrology techniques like optical critical dimension scatterometry (OCD) and 

CDSEM are typically used for in-line CD measurements. However, both techniques have limitations 

and advantages [1]. For instance, discrepancy in material properties (n&k) and long model-

optimization times restrict OCD scatterometry techniques, while resist shrinkage and its charging 

effect impact the measurement performance of the CDSEM tool. In this context, having an early 

insight into the electrical performance and variability can be a significant game changer for high-

volume manufacturing (HVM), such that proper action can be taken in a timely manner either to scrap 

or rework the wafer, and improve or monitor the process. 
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As we progress to more advanced nodes, device structure and layout architecture get very 

complicated, sometimes requiring a greater number of process and metrology steps requiring greater 

process monitoring and control. This increase in the number of OCD steps requires a longer time to 

solution, especially in R & D. Moreover, tighter process control budgets are compromised by model 

errors. Modelling of non-periodic structures can make OCD modeling problematic. For these reasons, 

machine learning solutions will become an attractive tool for future process control and monitoring 

purposes.  

Scatterometry involves light diffraction from periodic structures, and the intensity of the 

diffracted light is measured. The measured intensities are then compared with modeled data to extract 

parameters of interest. The modelling toolbox consists of a full geometrical model with Rigorous 

Coupled Wave Analysis (RCWA) [2]. Predicting data from OCD using machine learning is also now 

available.  The advantage of scatterometry is that it is sensitive to the change in geometry and material 

properties. It is also a fast and non-destructive technique. However, it is an indirect measurement, and 

the parameters need to be obtained by computer modelling.  

The methodology involves cross combining the OCD spectra with reference data. Then, a 

mathematical estimator is generated using a set of machine learning algorithms. The data used to create 

the mathematical estimator is the training set. Once the training is complete and shows a good 

correlation to the reference data, we can use the OCD spectra to predict different outcomes, such as 

CD, overlay and electrical performance for other wafers. This technique is less dependent on structural 

complexity. Model optimization is done by DOE. The technique works complimentary to OCD 

modelling.  

2. Mask Layout and description of electrical structures 

The minimum design CD and pitch is 24nm and 96nm, respectively. We apply a litho-etch-

litho-etch approach whereby the first M1A layer is exposed. Afterwards, the pattern is transferred to 

an oxide HM, followed by exposing the second metal layer, to achieve 48nm pitch. There are 25 sub-

dies within a field. Both are LF field masks. We then use the NTD process to print trenches.  

3. Test vehicle description 

3.1 Process flow 

 

Fig. 1. Process flow showing LELE approach to achieve 48nm pitch 
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Fig.1 displays the basic process steps involved in achieving 48nm metal pitch. The first step 

in the process includes BEOL stack deposition followed by M1A litho exposure under an ASML 

immersion scanner. The target CD post litho is approximately 40nm L/S. A negative tone development 

process was chosen to print trenches. A 30nm SOG on top of 100nm SOC was used to obtain the 

desired CD post etch. The oxide etch step involves opening the SOG/SOC step and transferring the 

pattern onto an Oxide layer. A second litho exposure involving the M1B layer is then performed, 

followed by pattern transfer onto the oxide layer. Both patterns are then transferred onto the TiN HM 

(hard mask) layer. At this stage, the CDSEM data, post-etch overlay data, as well as 

scatterometry/OCD data, are collected. Finally, the HM is used to pattern the low k trenches, which is 

filled with Cu, followed by a CMP step. A 5nm thin layer of SiCN was then deposited on top of the 

wafer to prevent oxidation of the Cu metal lines. The wafers are then sent for further scatterometry 

measurements on all resistance and capacitance targets before undergoing electrical tests.  

 

3.2 Test structure description 

Our study involved measuring CDSEM, collecting OCD spectra and measuring line resistance 

at 4 different locations. The site names ending with WR and NR signify that these targets either have 

designed roughness (WR) or are without designed roughness (NR). The length of the line is 

approximately 600 microns and CD =24nm. Each sub-die also has 12 (AB1, AB2, ......., AB6 and 

BA1, BA2......, BA6) vertically placed Fork-Fork structures to correlate with the Y overlay and 12 

horizontally placed structures to correlate with the X overlay. The CD is 24nm and the period is 192 

nm. The different designs have different spacing between them. 

3.3 CD and Overlay fingerprint 

To obtain a good training set for machine learning, we created a sub-recipe for the scanner job such 

that there is a translational offset of 0 to 7.5nm in the X and Y directions for the four columns, as 

shown in Fig. 2. These are referred to as programmed overlay wafers for the remainder of this paper. 

 
Fig. 2 Programmed and non-programmed (POR) overlay fingerprints post litho. 

In order to induce CD change and obtain a good machine learning training set, etch DOE was 

performed by manipulating the oxide etch recipe at the M1B oxide etch step, keeping the etch process 

at M1A step in POR condition. Consequently, the first version (V1) of etch DOE increased the CD 

from the POR condition, and the second version (V2) of the etch DOE decreased the CD, as shown in 

Fig. 3.  
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Fig. 3  CD fingerprints post Oxide etch for POR and DOE wafers. 

 

 

4. Results and discussion 

4.1 Modeless CD prediction from OCD spectra and its correlation to reference CD Post HM etch. 

Our goal is to measure and predict CD on electrically relevant structures. To use the machine 

learning functionality, we must set up wafers for a training set. Once the training is done, we can use 

the OCD spectra from the remaining wafers to obtain the predicted CD. For the capacitance site AB6, 

the average CD was calculated, based on the CDSEM measurements, and used as the reference CD. 

Machine learning was then used to predict the CD of the same site for other wafers. The M1A and 

M1B lines are practically identical, and the OCD signal, which collects the full target size (30 µ2) in 

a single exposure, cannot discriminate between the two lines. For this reason, the average CD is chosen 

for machine learning training. 

Full field OCD spectra collection and SEM measurement was carried out in this study. The 

SEM measurement was performed on four different resistance sites. One FEM wafer and two etch 

DOE wafers, as mentioned in the table, were used to perform the training for the resistance site. For 

the capacitance site, we chose one FEM wafer, one POR and one etch DOE wafer for the training set. 

The predicted CD using the machine learning solution shows excellent correlation to the reference 

CD, as shown in Fig. 4. The R2 values obtained were 0.94 for the resistance site and 0.95 for the 

capacitance site. 
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Fig. 4  Modeless CD prediction from OCD spectra and its correlation to reference CD post HM etch 

 

4.3 Predicting overlay from OCD spectra using machine learning  

Another application of the machine learning technique is for predicting overlay values using 

the OCD spectra collected. Two different techniques were chosen as reference overlay values: SEM-

based [3] and diffraction-based overlay (DBO). For the SEM-based overlay calculation, we used the 

formula below to calculate the values obtained from the CDSEM data.  

Overlay by SEM = CD of (M1A+M1B)/2 +Space – 48(nominal width) 

The SEM measurement and OCD spectra collection were done at the same target, while diffraction-

based overlay (DBO) were collected at a different location within the field (a designed DBO target). 

The training set included two wafers, one POR and one Programed overlay wafer. Since the 

measurement performed here was only done on vertical structures, we only show the Y-overlay values 

here. The same prediction can be done for X-overlay using the OCD spectra from horizontal structures. 

Fig. 5 illustrates that an excellent correlation exists between predicted overlay and SEM based overlay 

techniques and a moderate correlation when comparing predicted values to the diffraction-based 

technique. Different measurement sites could be one reason for the low R2 value, and there was an 

intra-field contribution which resulted in a lower R2 value. However, the correlation was found to be 

good for the programmed overlay wafers.  
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Fig 5. Correlation of overlay values predicted using machine learning technique vs (a) SEM-based 

overlay (b) diffraction-based overlay 

4.4 Predicting line resistance from OCD spectra: OCD model vs Machine learning 

The line resistance is plotted in the vertical axis for all the wafers and for three different targets. 

The wafers where DOE was performed can be identified with decreased and increased resistance 

values compared to the POR wafers. We also found that the resistance site with programed roughness 

(BWR compared to AWR) showed slightly higher resistance than sites without programed roughness. 

In the OCD model, the inverse of the Cu area is used to directly correlate with the line resistance. In 

Fig. 6, we have shown the result for three different sites: M1A with programmed roughness and M1B 

with and without roughness structures.  

 

Fig 6. Measured line resistance of different wafers for different targets: AWR (M1A with 

programmed roughness), BNR (M1B without programmed roughness), BWR (M1B with 

programmed roughness)  
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The OCD model which was used to predict the line resistance of different structures shows a 

quite good correlation (0.81) to the measured line resistance values as illustrated in Fig. 7a. For the 

machine learning training set we used a FEM wafer, a POR wafer, one wafer with V1 etch recipe and 

another wafer from a V2 etch recipe. In Fig. 7b, it was demonstrated that by applying machine learning 

algorithms, the resistance value for all the wafers and different targets were predicted with an 

improved R2 value when compared to the measured resistance. Moreover, all the different target types 

are present on the same linear fit.  

 

Fig. 7. Correlation of resistance values predicted by (a) OCD model (b) machine learning 

technique to the measured values 

4.5 Predicting capacitance from OCD spectra: OCD model vs machine learning 

In Fig. 8, the measured capacitance data is plotted on the vertical axis against the different 

measurement sites (explained in section 3.2) on the horizontal axis. It shows our expected target design 

trend of increased capacitance when the distance between the metal Line A and B decreases.  

 

Fig. 8. Measured capacitance in vertical structures for different sites and wafers. 

Once the space width, or d value (described in Fig. 9), was obtained from the model, the capacitance 

was calculated using the formula shown in Fig. 9b. It was found that there is a good correlation 

between the capacitance obtained from the OCD model and the measured capacitance value, although 

the slope is slightly high. The value of slope is dependent on parameters such as the relative 
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permittivity (k) and the area of the plates (A). Thus, any error occurring while calculating the 

theoretical value of capacitance could affect the slope. 

 

Fig. 9. (a) Illustration of the OCD model (b) formula to calculate the theoretical capacitance 

values (c) correlation plot between predicted capacitance (from OCD model) and measured 

capacitance 

For the machine learning solution, we used three wafers for training (wafers 7, 9 and 11) and we 

obtained a training score of 0.99. The solution thus generated was used to predict the capacitance of 

other wafers in the lot and it still showed a good correlation, as shown in Fig. 10. In the histogram in 

Fig. 11, we compare the correlation between predicted and measured capacitance for different 

capacitance sites. Values predicted from the machine learning solution showed higher correlation as 

compared to OCD modelling.  

 

Fig. 10. Correlation plots between predicted capacitance using the machine learning technique and 

measured capacitance 
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Fig. 11. Complementary machine learning solution using OCD spectra showing better R2 values 

compared to OCD model 

 

5 Conclusions 

There is a motivation to introduce machine learning solutions for R&D and HVM for advanced 

technology nodes, which require multiple metrology steps for process monitoring and control—the 

increasing number of OCD steps can require a longer time to solution. Moreover, tighter process 

control budgets could be compromised by model complexity. The OCD technique is based on a 

rigorous coupled-wave analysis (RCWA), which is designated for periodic structures. Applying this 

technique for non-periodic structures, such as electrical structures, is a challenge. Using machine 

learning algorithms can overcome these three challenges and become a complementary approach, in 

addition to the RCWA modeling technique, for future process control and monitoring purposes. This 

work shows that machine learning using OCD spectra can predict electrical performance with high R2 

values, enable good correlation to reference CD, demonstrate good correlation to diffraction-based 

overlay and SEM-based overlay and improved correlation between measured and predicted resistance 

and capacitance compared to the OCD model. To complete this study, and qualify the machine 

learning approach, we will need to run a validation set over a longer time period, with multiple wafer 

batches.  
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