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ABSTRACT 

To keep up with logic area scaling, BEOL dimensions have been reduced at an accelerated pace, 

leading to ever smaller metal pitches and reduced cross-sectional areas of the wires. As a result, routing 

congestion and a dramatic RC delay (resulting from an increased resistance-capacitance (RC) product) 

have become important bottlenecks for further interconnect scaling, driving the need for introducing 

new materials and integration schemes in the BEOL.  

The current paper studies the damascene process flow that uses a single exposure EUV to create 

metal lines and 2D patterns at metal half-pitch of 14nm, corresponding to the imec N5 node for logic 

BEOL layer. A bright field mask with a negative tone resist process was used to develop trenches and 

transfer these patterns into an oxide dielectric layer. Following this, the trenches were filled with 

ruthenium (Ru) for electrically testing.  Test vehicle  included multiple structures, including E-test 

resistance and capacitance structures, to allow a comprehensive study of the proposed process flow.   

Metrology requirements and performance at various process steps will be discussed in this paper. 

Our focus will be on the scatterometry methods that together with machine learning (ML) allow fast 

and accurate measurements of multiple parameters of interest at large sampling. In the current paper, 

we present results for inline measurements of line and space critical dimensions (CD), line edge 

roughness (LER) – after patterning and after hard mask etch, and the prediction of the electrical 

performance of the metal lines after Ru CMP. In addition, scatterometry ML capabilities for inline tip-

to-tip (T2T) measurements are successfully demonstrated.   
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1. INTRODUCTION  

The integrated circuit (IC) manufacturers are well known for their drive to continuously shrink 

device features, increasing drive current, and reducing voltage. This drive has often resulted in the 

complex 3D architecture of devices and increased the relative importance of metrology [1]. The role 

of metrology in IC manufacturing includes exploratory research, technology development, as well as 

process control. Techniques like scatterometry and CDSEM are typically used for inline CD 

measurements. However, each method has its limitations and advantages. For instance, uncertainty in 

material properties (n&k) and long model-optimization times restrict scatterometry techniques, while 

resist shrinkage and its charging effect impact the SEM tool's measurement performance [2].  

Scatterometry has been established as a fast, non-destructive metrology method providing 

complete profile information of fins in FEOL and the interconnect lines in BEOL [3]. Figure 1 shows 

a schematic explaining the operation of the scatterometry tool. Traditional scatterometry model 

building needs a longer time to solution, especially in R&D. Modelling of non-periodic structures can 

be problematic and can take even longer. Moreover, strict process control budgets may be 

compromised by model errors. For these reasons, direct measurements of all the essential parameters 

may not be possible, which leads to the need for predictive statistical approaches [4].  

 

Figure 1 Schematic of scatterometry spectra collection and data analysis 

Machine learning (ML) solutions have become an attractive tool for process control and 

monitoring purposes and E-test prediction [3,5,6]. The methodology involves cross combining the 

inline scatterometry spectra with reference data. Then, a mathematical estimator is generated using a 

set of ML algorithms. The data used to create the mathematical estimator is the training set. Once the 

training is completed and shows a good correlation to the reference data, the scatterometry spectra are 

used to measure and predict parameters of interest on other wafers. ML capabilities were successfully 

demonstrated for inline CDs [7] and EOL E-test resistance for HVM production [3]. 

Additionally, the ML technique is less dependent on the measured patterns' structural complexity 

and can also measure on the non-periodic targets. The model optimization is done by the design of 
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experiment (DOE) methodology. Extreme process window corners can be used during training the 

data set to ensure ML can measure all process variations.  

ML-based inline scatterometry measurements allow early awareness of the electrical 

performance and variability and significantly reduce costs for both R&D and high-volume 

manufacturing (HVM) by taking the proper action on time to either scrap or rework the wafer, 

improving the process robustness and monitoring accuracy.  

2. PROCESS FLOW 

The patterning approach requires printing a minimum metal pitch of 28nm using an ASML 3400b 

EUV scanner. As shown in Figure 2, an SMO dipole source was used in this study to pattern vertical 

line space structures. The process starts with BEOL stack deposition on silicon wafers, followed by 

coating the wafers using metal oxide resist. EUV light (13.5) exposure and negative tone development 

(NTD) process was used to pattern trenches. This was followed by transferring the patterns into a 15nm 

TiN layer and then into a 60nm oxide dielectric layer using a different plasma etch conditions. The 

metallization step involved filling the trenches with 1.5nm TiN and ruthenium (Ru) followed by 

chemical mechanical polishing (CMP) to form electrically active Ru lines. CDSEM reference data was 

collected at ADI and AEI, while scatterometry spectra were collected at ADI, AEI, and post CMP. 

Resistance and capacitance of the Ru interconnects were measured by E-test.  

 
Figure 2  Process flow, stack and source map 
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3. RESULS AND DISCUSSION 

3.1 Space CD measurements of 1D features 

To produce a robust design of the experiment (DOE), we varied different process parameters at 

lithography and at etch steps. Lithography FEM (focus-energy matrix) and dose meander wafers were 

fabricated to obtain wide variation in the CD fingerprints. Table 1 shows the process conditions for 

different wafers. 

 

Wafer id Litho Etch 

D10 FEM POR 

D13 Dose meander POR 

D14 CDU POR 

D15 CDU POR 

D16 CDU POR 

D17 CDU POR 

D18 CDU POR 

D19 CDU POR 

D20 CDU DOE 

D21 CDU DOE 

 

Table1. Wafer process conditions at various steps 

 

To ensure successful machine learning training (good training score), possible outliers need to 

be filtered from the reference data set. Reference data filtering was an essential aspect on the ML 

solution. The process window is small at these tighter dimensions, and lots of defects were observed 

on the CDSEM images when measured pictures were obtained outside the process window regime. 

Stochastic defects such as line bridges and breaks resulted in erroneous CD values while using the 

online CDSEM image-analysis algorithms.  

Scatterometry spectra for ADI trench CD ML training were collected in the bulk line/space (LS) 

region. ML model was created using wafers FEM D10, Dose meander D13, CDU D14 and D15 

(Table1) as training set wafers and tested on other CDU wafers.  Figure 4 presents variability charts 

for all wafers.  Mean CD values measured by ML solution on CDU wafers are comparable to the 

reference data. ML results show consistently smaller within the wafer (WIW) range.  Wafer maps for 

FEM and CDU wafers are presented in Figure 3 for both CD SEM reference values and ML solution. 

There is a reasonable general matching of WIW patterns, with ML results showing a smoother map 

with fewer variations between the neighboring dies for the CDU wafer and the absence of the four 

dies with large measured CD values that are unexpected on the right side of the FEM wafer (larger 

dose).  
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Figure 3. ADI variability chart for CDSEM reference and ML solution CD  

 

 
Figure 4. ADI wafer maps for FEM and CDU wafers: top CDSEM reference, bottom - ML solution. 

 

Inline CDSEM data outliers were filtered also post HM etch to remove measurement errors 

caused due to line breaks and bridges. Scatterometry spectra for AEI ML training were collected from 

three different structures: fork-fork (FF) structures, meander (MR) structures, and bulk line/space (LS) 

region with 14nm CD and 28nm pitch. All structures and locations of the OCD and CDSEM reference 

measurements are presented in Figure 5. The fork-fork structure's width of the electrically active area 

is only 17 microns, which is much smaller than the scatterometry spot size (30 microns square). In the 

meander structure, the scatterometry spot size is comparable to the width of the device structure.  

 

Figure 5. AEI measurement sites 

A single ML model was created for all sites using wafers FEM D10, Dose meander D13, and 

CDU D14 and tested on all CDU wafers. Correlation plots are presented for each feature in Figure 6 

(on top). We have separated all features to highlight the ML's capability to measure small targets:  
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comparing the R2, the best correlation is for FF. This proves the ability of ML to measure targets much 

smaller than the OCD spot size accurately.  

Wafer (D21) with much smaller trench CDs due to the modified etch process was also measured 

accurately by the ML solution, which shows ML solution capable of covering even unexpected process 

variation in the etch. The wafer maps are presented in Figure 6 (bottom) for two CDU wafers: both 

reference and ML solution show expected radial etch distribution of CDs for both etch conditions.  

 

 

Figure 6. (Top) AEI Correlation plots between CDSEM reference versus ML prediction. (Bottom) 

AEI wafer maps for two CDU wafers (different etch conditions) 

3.2 Tip-to-Tip (T2T) CD measurements of 2D features 

The ability to directly print 2D features is a significant advantage of SE EUV compared to multi-

patterning schemes and allows to simplify the process flow by eliminating block patterning, at least at 

some metal layers [8]. Usually, T2T measurements are done with CDSEM, which measures multiple 

single T2T structures to exclude measurement noise and capture variations of the T2T structures [8]. 

Unique test sites with different T2T structures were created to test OCD capabilities, including T2T 

variations and period and placement. The current study presents results for the test design consisted of 

5 different T2T dimensions (22nm-26nm) between a staggered 60nm long islands. The test design 

schematic is presented in Figure 7A, and CDSEM images of the PR and HM patterns are shown in 

Figures 7B and C, respectively. The CDSEM measurement consisted of averaging 50 different T2Ts 

within one FOV for each location/die, and the average value was used to train the machine learning 

algorithm. The training was performed on FEM, dose meander, and CDU wafers for all five different 

feature sizes combined. ML solutions were trained for the ADI and AEI process steps.  
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Figure 7.  Schematic of the staggered block arrays (a)  ADI printed pattern (b),  AEI pattern 

etched into HM (c) 

This solution was then used to verify each feature separately on the whole lot. When the 

predicted data were plotted vs. the reference data separately for each T2T case, we obtained a high R2 

value for both the ADI (Figure 8a) and AEI (Figure 8b) step, suggesting a good match to our reference 

data. It indicates that the OCD spectra signal could distinguish the slight variation considering the low 

T2T pattern density. Higher root mean square error (RMSE) values after etch are probably explained 

by wafer D21, which was etched with a non-POR recipe and was flagged in our correlation plots with 

different slopes (marked by green circles in Figure 8B).  

Hence, OCD ML provides a fast and accurate inline monitor of the T2T metal line average value 

in ADI and AEI steps. 

 
Figure 8. Correlation of ML predicted T2T values compared to reference CD values (a) ADI (b) AEI 

 

LCDU of the T2T structures is also an essential parameter for the process control that CD 

SEM measures as a variation of the multiple T2T measurements at the same location.  Analysis of 

measured LCDU values for our current structures and sampling based on 50 CDSEM T2T 

measurements showed large LCDU values (3 sigma around 10nm) that were almost not changing 

with our DOE conditions, as may be expected with dose variations. This behavior probably indicates 

the need for a more extensive sampling to enable accurate LCDU values as a requirement for ML 

training [9].   
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3.3 AEI LER measurements with ML 

Reference CDSEM images were collected 49 times across the slit for different dose and focus 

conditions on P28 vertical line/space (LS) modules. The MetroLER software (v2.2.0) was then used 

to calculate the unbiased line edge roughness (LER) values. The machine learning training was done 

on two FEM wafers etched with two different etch recipes. LER data was collected in few columns 

(doses) with varying focus to maximize the LER range, as presented in Figure 9. Part of the data (two 

highlighted columns) was used for training the scatterometry spectra. Full map AEI unbiased LER 

estimation was also done on P28 vertical line/space (LS) modules using the ML solution. 

 

Figure 9. Reference unbiased LER values for two different FEM wafers calculated using 

MetroLER software (v2.2.0) 

ML model was then validated on all measured dies and showed a correlation R2 of 0.85 with a 

good RMSE of 0.03 for a small overall LER range (see Figure 10). It indicates that OCD ML prediction 

combined with the suitable reference input allows the well-predicted LER value at the AEI step.  

 

Figure 10.  Correlation of predicted LER to reference LER values 

After validation, we have used ML solution to predict wafer maps of both FEM wafers (see 

Figure 11). The LER range in the map is quite comparable to the split condition max range in the 

training set (1.6nm ~ 2.0nm for the max focus range).  It is interesting that predicted maps show the 

expected small influence of dose on LER and expected better LER for the second etch condition. These 

prediction results prove that scatterometry with machine learning can measure unbiased LER with 

extensive sampling, much faster than the reference metrology.  
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Figure 11. AEI LER wafer maps by scatterometry based ML solution 

3.4 Etest prediction: Capacitance 

After filling the trenches with ruthenium (Ru) and chemical mechanical polishing (CMP), the 

wafers were tested electrically. The FF structures were used for capacitance measurements. ML 

training was done separately for Pitch 28nm (14P28) and Pitch 30nm (15P30) structures. In the case 

of FF structures, the scatterometry spot size is bigger than the active device area's width, as mentioned 

before, and is demonstrated in Figure 12. When comparing the reference capacitance data to the ML 

predicted data, a good correlation score for both 14P28 and 15P30 fork-fork structures were obtained 

(see Figure 13a).  

Correlation R2 for the P30 structures is better compared to the 14P28 structures. One of the 

possible explanations may result from the more significant variability of P28 capacitance 

measurements due to defectivity.  

 

Figure12.  Schematic of the FF size and the scatterometry spot size.  

E-test measured wafer maps presented in Figure 13b shows an example of the unusual large 

capacitance value for the 14P28 structure compared to the neighboring dies (marked with the red circle 

in the center). This indicates a defective die, and a detailed defect inspection study is required to 

analyze the exceptional capacitance value. The ML predicted wafer map does not show this behavior. 

Hence, the relatively low R2 of 14P28 and the mismatch points were mostly coming from the defective 

dies. It also shows that the scatterometry spectra are not sensitive to the small defects that can cause 

Proc. of SPIE Vol. 11611  116112A-9
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 01 Mar 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



10 

erroneous capacitance measurements and could provide an overview in a wide range area with much 

less impact from defectivity. 

 

Figure13. Correlation plots between measured E-test and predicted capacitance values for 

14P28 and 15P30 structures. (b) Capacitance wafers maps for 14P28 CDU wafer, measured (top) 

and predicted (bottom). 

3.5 Etest prediction: Resistance 

Resistance measurements were done on the meander structures, which have very long lines with 

multiple turns for resistance measurements (shown as a blue line in Figure 14), and dummy lines of 

the same CDs, that may be continuous (MR1) or cut into pieces (MR6). We present results for ML 

solutions that were trained for each one of the three structures (MR1 14P28 and 15P30, and 

MR6:14P28).  

 

Figure14. Schematic of different meanders and the scatterometry spot size. 
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Predictions for all wafers showed good correlations to measured resistance values (R2>0.93) in 

two pitches and two types of structure. The results are shown in Figure 15 below.  

 

Figure15. Correlation between measured and predicted resistance values for three different 

devices 

 

Figure16 Wafers maps: (a) measured and predicted resistance MR1 14P28 structure on a CDU 

wafer (b) space CD of the same wafer AEI 

As expected, lower trench CD seen after HM etch in the wafer center showed higher resistance 

values. The highlighted die in Figure 16 showed an extremely high measured resistance value and was 

filtered out during the ML training. This can be due to a metal line break, and a detailed failure analysis 

study is required to understand the failure cause. ML solutions, on the other hand, predicted the Ru 

lines' electrical performance as if there are no defects, suggesting there is no sensitivity of the 

scatterometry spectra to defects.  

CONCLUSION 

Pitch 28 BEOL wafers were fabricated using EUV single print exposure with metal oxide resist 

and bright field mask. The damascene process was applied by using ruthenium (Ru) as metal lines. 

With ML solutions, scatterometry spectra demonstrated good capability for inline process monitoring 

after Litho (ADI) and HM etch (AEI) for various targets and parameters. Scatterometry measurements 

of line/space measurements, including CDs and unbiased LER, were verified and showed a good 

correlation in a small range. Tip to Tip variation in the staggered structure could be predicted by 

scatterometry ML solutions that speed up their measurement. It was demonstrated that targets smaller 

than the OCD spot size could be trained and verified accurately by ML solution. Beyond dimensional 

metrology, the scatterometry ML solutions post-CMP reveals excellent prediction of e-test 

measurements. Resistance and capacitance measurements were trained and validated on multiple 

meander and fork-fork structures, respectively. It was also shown that since scatterometry 
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measurements are not sensitive to small stochastic defects, the required ML training set needs to be 

carefully filtered due to their considerable impact on the referencing technique reading. Once correct 

training is performed, the ML solution can provide a prediction for locations where electrical 

measurements are compromised due to small defects.  
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