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ABSTRACT   

Machine learning (ML) techniques have been successfully deployed to resolve optical metrology challenges in 
semiconductor industry during recent years. With more advanced computing technology and algorithms, the ML system 
can be improved further to address High Volume Manufacturing (HVM) requirements. In this work, an advanced ML eco-
system was implemented based on big data architecture to generate fast and user-friendly ML predictive models for 
metrology purposes. Application work and results completed by using this ML eco-system have revealed its capability to 
quickly refine solutions to predict both external reference data and to improve the throughput of conventional Optical 
Critical Dimension (OCD) metrology. The time-to-solution has been significantly improved and human operational time 
has also been greatly reduced. Results were shown for both front end and back end of line measurement applications, 
demonstrating good correlations and small errors in comparison with either external reference or conventional OCD 
results. The incremental retraining from this ML eco-system improved the correlation to external references, and multiple 
retrained models were analyzed to understand retraining effects and corresponding requirements. Quality Metric (QM) 
was also shown to have relevance in monitoring recipe performance. It has successfully demonstrated that with this 
advanced ML eco-system, streamlined ML models can be readily updated for high sensitivity and process development 
applications in HVM scenarios.   

Keywords: Machine learning, Optical Critical Dimension (OCD), big data, High Volume Manufacturing (HVM), 
incremental retraining, correlation, time to solution, Quality Metric (QM)  
  

1. INTRODUCTION   
1.1 Background  

As semiconductor devices continue to shrink in size while more complex 3D structures are being used, process control and 
metrology have been facing ever-greater challenges. Advanced metrology techniques are in demands for all aspects of 
semiconductor R&D and manufacturing process control. On the one hand, conventional metrology technologies such as 
Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and 
scatterometry, have been further advanced to provide better accuracy and higher sensitivity to cope with these challenges. 
Hybrid or combined metrology of these techniques is also an important strategy that could be used to extend the 
applicability of current instruments . On the other hand, the Machine Learning (ML) approach based on advanced data 
analytics and innovative algorithms has also been pursued to extract additional values of the existing measurements from 
these metrology techniques.   

[1]

Scatterometry, an optical measurement technique based on Rigorous Coupled Wave Analysis (RCWA), can provide 
geometric profiles characterized from the optical diffraction or reflectance spectra from a periodic structure with 
nanometer-scale features — it is also called Optical Critical Dimension (OCD) metrology. Scatterometry has been proven 
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as an advantageous method to provide the full profile information of various applications in advanced technology nodes. 
However, the combination of device size scaling, complex 3D architecture, and tightening process tolerances have 
challenged the capabilities of scatterometry. In recent years, the ML predication has been used as a complementary method 
to OCD metrology. ML and analytics were used to accurately predict the electrical performance of deep trenches and metal 
lines in the past [ - ]. In this approach, scatterometry spectra collected from relevant semiconductor device structures, 
together with reference data, are used for ML training to build up predictive models for inline measurements.   

52

ML gives computers the ability to learn with data without being explicitly programmed . The conventional OCD 
modeling requires to build up a physical model with geometric profiles for CD measurements, while the ML-based 
predictive metrology removes necessity of building complex physical models for explicit optical simulations, instead it 
relies on a large set of spectra and reference for training to obtain generalized regression models. Thanks to advanced 
algorithm, tremendous computing power, and large amounts of data nowadays, the ML based metrology becomes 
incredibly powerful to make predictions or calculated suggestions. The ML enabled predictive metrology provides an 
alternative to the conventional metrology techniques, particularly in the regime where the direct measurements are 
impossible or impractical. The introduction of ML to resolve optical metrology requirements has been well documented 
in the past few years, accompanied by improvements in measurement quality, time-to-solution and enabling a closer link 
to device electrical test parameters. In our previously published work , improvements to sensitivity of critical geometric 
parameters and the prediction of future device performance were demonstrated in High Volume Manufacturing (HVM) 
using ML derived predictive models. Compared with conventional semiconductor metrology techniques, the ML 
predictive metrology is an advantageous and complementary methodology, which are more specifically reflected in the 
following aspects.   

[5]

[6]

• Conventional OCD models have faced increasing challenges from cross-parameter correlation or inducing error 
when parameters causing spectral variation are presumed fixed in the model. There is also often some uncertainty 
in how to link variations of a particular parameter with the expected device performance impact. The benefit of 
ML approach was clearly established in minimizing these errors and uncertainties associated with conventional 
OCD models.   

• For conventional scatterometry, spectra need to be collected from a periodic structure for RCWA-based OCD 
modeling, and such a periodic structure is usually built as a dedicated OCD test site in the scribe line. These 
structures often don’t have similar processing to real device structures or e-test sites, which are sometimes 
nonperiodic or too complex for modeling. With the availability of good quality of reflectance spectra and 
reference data, it is feasible for the ML predictive metrology to measure such non-periodic structures and 
overcome the limitations of the conventional scatterometry — this is critical for accurate process monitoring and 
control.   

• ML techniques may help reduce cost or achieve high throughput improvements by using faster measurements 
instead of lower throughput and more expensive traditional metrology techniques. For example, it was reported 
that ML and hybrid metrology using high throughput scatterometry and lower throughput X-ray fluorescence 
(XRF) were applied to detect voids in copper lines, having achieved a scatterometry throughput with a high 
sensitivity close to that of XRF .   [4]

However, the ML metrology can usually be used as a complementary technique to OCD metrology because it requires a 
lot of reference data for training, and the OCD model can readily provide detailed geometric parameters. If combined with 
OCD and other metrology techniques, ML predictions can enable more sophisticated and powerful metrology to meet 
HVM requirements for the semiconductor industry.   

1.2 Motivation  

Although the ML metrology has been an interesting focus in recent years, new challenges have emerged when ML derived 
solutions were implemented in volume manufacturing, particularly for a sustainable methodology to train a model with 
sufficient sample size of the applicable “reference.” The methodology previously used to verify the accuracy of the ML 
output vs. the applicable reference had to rely heavily on time consuming data mining, often using very large data sets. A 
more automated system therefore appears desirable to make the process less labor intensive and to reduce human error.  

ML community has reached a consensus that “data matters more than algorithms for complex problems”, since it was 
emphasized by the article “The Unreasonable Effectiveness of Data” in 2009 . This big data requirement has the same [7]
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significance for ML metrology in high volume semiconductor manufacturing. In addition, frequent retraining or 
incremental retraining is highly desirable for many applications to ensure the prompt adaption to process changes or other 
variations such as tool drifting, reference accuracy changes. More ML training jobs, on the other hand, require shorter 
time-to-solution and less resource investment. The previous manual data mining practices used to create and validate such 
ML models would have prevented such large-scale model developments, implementation and retraining. In order to meet 
these demands, an ML system with a capacity to handle big data is desirable to enable systematic analysis and information 
extraction, or to handle large data sets that are too large or complex to be processed by traditional dataprocessing software.  

Another challenge for the ML metrology is to clean or avoid poor-quality data and reference. Most data scientists spend a 
significant part of their time on cleaning up the training data . To achieve much more efficient data analysis, an advanced 
ML metrology system integrated with the existing measurement tools and reference data (or host database) is highly 
desirable, particularly for advanced technology nodes with complex 3D structures. 

[6]

To overcome these obstacles and limitations, more sophisticated ML system with big data processing capability and high-
level automation need to be developed. In this work, such an advanced ML eco-system was developed, installed, and 
evaluated, which greatly expands the capacity of ML metrology while significantly improving the time-to-solution.  

2. ADVANCED MACHINE LEARNING ECO-SYSTEM
2.1 System Description 

In comparison with the conventional ML system presented in the previous SPIE work [5], this advanced ML eco-system 
has a huge infrastructure change thereby with data handling and processing advantages based on a big data architecture 
and ML algorithm. In our previous ML system, spectra need to be downloaded from scatterometry tools, and reference 
data need to be acquired from external metrology tools to be paired with spectra for ML training. All these jobs were 
completed offline manually. The proposed ML eco-system is well integrated with the OCD metrology fleet, allowing 
reflectance spectra to be automatically streamed and stored in the system after wafer measurements. Figure 1 shows the 
schematic of the ML eco-system and its data process flow. Once external reference data are available, reference files are 
copied to a shared folder or directly imported into the ML system. Then the system can automatically pair the spectra and 
reference data based on wafer ID and die numbers or X/Y coordinates. ML training and cross validations can be completed 
for selected time span through a user-friendly interface. The ML model can be readily generated, then distributed to all 
metrology systems or exported for offline use. In addition, most data processing, analysis, and storage can be conducted 
with high speeds within the system. After implementing a ML metrology recipe, engineers can monitor the process 
data/chart and corresponding Quality Metric (QM) and validate new wafers when reference data are available. In this 
procedure, the human labor was significantly reduced — the engineer’s operational time for creating a ML model was only 
about 5% of that for a previous ML recipe. When QM is poor or correlation to new reference is not ideal, retraining can 
be quickly conducted, and the recipe can be easily updated. It should be noted that all above procedures can be readily 
completed by a process engineer after 1-2 hours of training, unlike the many other metrological modeling techniques which 
usually need days or weeks of training to create measurement recipes.   

(a)    (b) 
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Figure 1. (a) Schematic of the ML eco-system to create, retrain and monitor ML metrology solutions, with significantly 
reduced human operations; (b) Data process flow in this ML eco-system.  



2.2 Features and Advantages   

This advanced ML eco-system provides superior data scalability, connectivity and retention. Its big data architecture allows 
the system to process large amounts of data, and to build and deploy custom ML models at the corresponding scale with a 
high speed. The ML eco-system is organically integrated with the OCD metrology fleet, allowing instant inline training 
and analysis, convenient recipe creating and distribution, as well as large data storage. These features enable the study of 
different retraining models and analysis of large sets of data, which could help discover patterns that were not apparent 
immediately, assisting “data mining” in high volume semiconductor manufacturing.  

Time-to-solution is an important criterion for generating a metrology recipe, particularly for the recipe that needs to be 
updated frequently. With this advanced ML eco-system, the time-to-solution can be significantly improved: ML model 
creation in minutes instead of hours. Figure 2 shows time-to-solution comparisons between the conventional ML model 
creation and model creation using an advanced ML eco-system. As reflected from multiple application examples, human 
operational time for creating such an advanced ML recipe is about 5% of that for creating a conventional ML recipe.   

 

 
 

Figure 2. Time-to-solution comparisons between our previous conventional ML system and the advanced ML eco-system for 
example applications.   
*These comparisons were only based on relatively smaller training sets which the previous ML system can process. Some of
the incremental retraining in this paper included many more training samples which cannot be handled through the
conventional ML system due to its limited capacity.

ML models have an associated Quality Metric (QM) allowing engineers to monitor the performance of ML models. This 
QM is an indication of how well the spectra under interpretation is contained within a training set. When the QM becomes 
worse, inline results would be analyzed and a retraining could be proceeded if necessary, to prevent possible excursions.  

The advanced ML system discussed in this work offers advantages to Fab engineers for easy recipe development and 
reducing human errors during model development, recipe preparations, and data analysis while incorporating scalability 
to process very large amounts of data in an automated approach, with significantly improved time-to-solution.   

3. RESULTS AND DISCUSSIONS
Five different applications from Front End of Line (FEOL) and Back End of Line (BEOL) have been evaluated in this 
work including:   

1) Fin CD measurements by predicted external reference
2) Thin film thickness measurements by predicted external reference
3) BEOL resistance measurements by predicted external reference
4) Throughput optimization for OCD thin film measurements
5) Throughput optimization for OCD BEOL etch measurements

These five applications were evaluated with different ML retraining intervals, based on either external or internal references 
including critical dimension (CD), thin film thickness, and e-test resistance, aiming to cover comprehensive cases to 
validate this methodology. Results for incoming new wafers were compared to applicable reference data, and R2, Error %, 
and QM were presented for incremental training time intervals.  
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3.1 Fin CD Prediction  

In this application, CD from an external metrology was used as reference data and predicted fin CD results were generated 
by the ML model for process guidance. Figure 3 compares the fin CD measurements by external reference to the data 
obtained from the ML model that was retrained 3 times after the initial model release. The mean and standard deviation 
differences of ML_Predict were +0.9% and -9.9% respectively relative to Ext_Ref. The R2 values are shown above the 
respective time period and model revision. Figure 4 shows the R2 of ML_Predict (Y axis) vs. Ext_Ref (X axis) for the four 
time periods, model revision combinations of Figure 3 (i.e. A1, B2, C3, D4) and the corresponding Error %, and QM trend.  

 

 

Figure 3. ML Predicted CD (labelled as ML_Predict) and external CD reference (labelled as Ext_Ref) show close baselines 
with a ~2.5 nm range. For 17,093 sampling dies, the averaged ML predicted CD has 0.6% higher mean, and 9.9% lower 
overall standard deviation than the external CD reference.   

 

  

Figure 4. R2, Error % and QM trend for fin CD prediction during blind test. 

The sample size of time period B is noted to be smaller than that of time periods A, C and D and the QM performance is 
noted to be generally improved with time. In Figure 5, the R2 and absolute value of Error % from the four time periods A, 
B, C and D were tabulated for all 4 revisions of the Model 1, 2, 3 and 4 in a matrix format. In this R2 matrix, observations 
along the diagonal correspond to the values in Figures 3 and 4 coming from the first blind test of each model, values below 
the diagonal capture the R2 for wafers included in the training and values above the diagonal are expected to have lower 
R2 in cases where the retrain capability is improving the measurement. Since the time period B has much lower sample 
size, it is suspected that the R2 values would not be reproducible for a larger sample size. Hence it is concluded that the 
best sustained R2 performance is achieved in time period D, revision Model 4, as also observed in the Error % table.  
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Figure 5. R2 (left) and absolute Error % (right) matrices for ML predicted fin CD results. 

3.2 Thin Film Thickness Prediction  

Figure 6 compares the ML predicted film thickness to the external reference, similar to the format shown in Figure 3. The 
average from all ML_Predict samples is 0.13% higher than that of the Ext_Ref with 7.9% higher standard deviation. Figure 
7 illustrates the R2, Error % and QM trend. Revision Model 1 was found to have high QM and Error % on some samples 
measured in time period A. It’s also found that revision Model 4 had a bimodal distribution in R2, Error % and QM. 
Revision Model 1 is carefully examined in Figure 8, where an additional population of wafers, Training 0, are added. The 
observation is that these wafers with higher (poorer) QM and larger Error % are also found to have a different population 
in the R2 plot which was not observed during model training.  

 

 

Figure 6. Comparison of thin film thickness results from external reference (Ext_Ref) and ML model (ML_Predict). For 18,972 
sampling dies, the averaged ML predicted thickness has 0.13% higher mean, and 7.9% higher overall standard deviation than 
the external reference.  

 

 

Figure 7. R2, Error % and QM trend for thin film thickness prediction during blind test 
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Figure 8. R2, Error % and QM for thin film thickness prediction from Model 1 applied on training and blind test samples. 

In Figure 9, selected wafers from time period D, and revision Model 4 are similarly highlighted to compare R2, Error % 
and QM. Generally high QM wafers are observed to have high Error % and follow a different R2 trend. The wafers are 
also suspected to have variability modes not being captured during model training. The R2 variations from time period 
A/Model 1 and time period D/Model 4 are addressed by Model 6 and 7, where the R2 and absolute Error % are optimal 
throughout time periods A through G as shown in Figure 10. It is also noted as an unexpected finding that the R2 and 
absolute Error % of model revisions 2, 3 and 4 recovers in time periods F and G.  

 

 

 

 

 

Figure 9. R2, Error % and QM for thin film thickness prediction highlighting high QM wafers in time period D by Model 4. 

 
 

 
 

 

 

 

          

 
 
  
 
 
 
 

           
         

           
          
         
         
          
          

        
         
 

 

        
          
        
         
        
         
   

 
 

 

 
  

      
Figure 10. R2 (left) and absolute Error % (right) matrices for thin film thickness prediction. 



  

3.3 Throughput Optimization from OCD Thin Film Measurement  

Figure 11 summarizes the R2, Error % and QM results from the ML prediction of an OCD thin film thickness measurement 
using a reduced incident angle spectral acquisition process as compared to the OCD model. The R2 is noted to be already 
at 0.996 value with the first model. This ML prediction enabled about 40% throughput improvement.  
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Figure 11. R2 matrix, Error % and QM trend for thin film thickness measurement by improved throughput ML model.  

No significant differences are evident in the Error % metric for the 4 blind test intervals. These ML models appeared to 
give adequate similar performance from the initial training. However, the QM is noted to be higher than normal for time 
period A by Model 1. This finding indicates that although QM may highlight cases where the ML model needs to be 
retrained, the R2 and Error % data is also needed to make a full decision.  

3.4 Throughput Optimization from OCD BEOL Etch Measurement  

Figure 12 summarizes the R2, Error % and QM from a ML prediction of an OCD measurement of a dielectric etch depth 
parameter using a reduced incident angle spectral acquisition process as compared to the OCD model.   

 

 

Figure 12. R2, Error % and QM trend for thin film thickness measurement by throughput optimization ML model.  

This ML prediction enabled about 40% throughput improvement. For these results, all 4 model revisions were tested on a 
common blind test time period after all 4 model training intervals to ensure a common sample size across 4 model revisions. 
A small R2 increase was observed from Model 1 through 4 as well as a minor improvement of Error % (converges towards 
0%) and gradual reduction in QM.  

3.5 BEOL E-Test Prediction  

Figure 13 shows the R2 matrix obtained from 3 model revisions of predicted BEOL e-test by ML as compared to the actual 
e-test value. Although a surprising lower R2 result is observed for model 3 applied to time period B samples, model revision 
3 is shown to have optimal R2 Error % and QM trend, particularly given the significantly larger sample size of time period 
C as compared to time period A and B. The results are in very good agreement with previously published work evaluating 
the impact of training size on the R2

 for applications such as BEOL e-test prediction .  [5]
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Figure 13. R2 matrix, Error % and QM blind test trend for BEOL E-test Prediction model.  

3.6 General Observation  

In Figure 14, R2 of 4 applications in this work are plotted on the Y-axis as a function of time along the X-axis. Although 
the maximum achievable R2 and number of samples measured varied among these applications, it is interesting to observe 
that the fin CD and thin film thickness applications benefit more significantly from model retraining than the throughput 
optimization thin film measurement and the BEOL e-test prediction application.  

 

 
Figure 14. R2 of the ML model (Y-axis) vs. time period (X-axis) for 4 applications studied in this work.  

4. CONCLUSION AND FUTURE WORK  
An advanced ML eco-system integrated with the OCD technique developed and implemented for fast, user friendly ML 
model creations to address HVM metrology requirements in semiconductor industry. This system allows for streamlined 
ML OCD model updates for high sensitivity and process development applications. Results from five applications over 6-
8 month of period were demonstrated.  

Two applications (fin CD and thin film thickness) showed benefits of model retraining to achieve best correlation R2 and 
minimized Error % to the reference. The QM signal provided visibility of relatively low R2 and high Error %, which is 
particularly valuable where the outcome and verification have long Mean Time to Detect (MTTD), a key performance 
indicator (KPI) for HVM management. Other applications had small or almost no correlation R2 improvements but appear 
to be driven only by number of training samples. Those ML models provided adequate performance from the initial 
training: R2, Error % and QM were close for all retrained models — we can say these ML models were saturated. Two 
throughput optimization applications showed up to 40% OCD throughput improvement compared to the reference OCD 
recipe, while keeping excellent correlations to the OCD reference.   

In conclusion, it has been successfully demonstrated that with this advanced ML eco-system, streamlined ML models can 
be readily updated for multiple applications in HVM scenarios. Compared with the previous ML model creation procedure, 
this advanced ML eco-system has the advantage of being able to process very large amounts of data in an automated 
approach with significantly improved time-to-solution. The incremental retraining improved the correlation to reference 
for specific applications, multiple retrained models were analyzed to understand retraining effects, and QM was used to 
monitor recipe performance.  

During this work, one-way incremental retraining strategy has been tried for different applications. Specific applications 
were evaluated using large amounts of data for analysis to identify appropriate ML solutions. This is a reasonable first step 
for a new application where the performance and details of each application were uncertain at the beginning. To spare time 



and resource further while keeping satisfactory performance and better automation. More efficient ML retraining strategies 
can be evaluated on different applications based on the available results and analyses to improve training efficiency while 
maintaining performance requirements. A final observation from this paper is that the exploration of OCD-based ML 
metrology continues to evolve and shows a very promising trend in the future semiconductor manufacturing metrology 
roadmap.  
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