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Abstract – In this study, we introduce a machine learning 

approach designed to augment the conventional Rigorous 

Coupled-Wave Analysis (RCWA) method used in scatterometry 

measurements. The utility of this approach is illustrated 

through two practical examples. Initially, we applied it to a 

recess structure in trench MOSFET. Following the application 

of our machine learning method to the RCWA model, the recess 

depth measurement exhibited improved stability and 

uniformity across the wafer. In the second example, we 

measured a 2D line trench in silicon (with a depth of 22 µm); 

here, both the top and bottom widths are parameters of interest. 

We show that our machine learning based model is more robust 

compared to the conventional RCWA method. Our results were 

then cross-verified using atomic force microscopy results and 

cross-section Scanning Electron Microscopy data, respectively. 
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I. INTRODUCTION   

 
The traditional use of electromagnetic simulations, such as 

Rigorous Coupled Wave Analysis (RCWA), has been 
primarily for scatterometric applications, to ascertain the 
geometry of various structures within a grid [1]. This proves 
beneficial when the spectroscopic reflectance spectra are 
sensitive enough to respond to small variations in the 
parameter of interest and when experimental data can be 
suitably characterized with an appropriate model. However, 
this method becomes considerably more challenging in certain 
situations, such as when dealing with a large pitch, an 
unfavorable aspect ratio between depth and critical dimension 
(CD), or a complex combination of different materials. In 
these instances, while the RCWA method may still provide 
the correct trend in variation, the uniformity or uncertainty of 
the measurements might be adversely impacted. In this 
context, machine learning (ML) based approaches have 
demonstrated promising results [2-3]. Furthermore, it has 
been observed that measurement accuracy improves 

significantly when utilizing a machine learning approach, as 
compared to traditional methods [4]. 

 

In this study, we illustrate this improvement through two 
distinct examples, demonstrating ML enhancement of the 
RCWA approach. The first case examines a recess in a 
MOSFET trench with a pitch greater than 2 µm. Here, it has 
been shown that the measurement of recess depth and sidewall 
oxide thickness is improved with the use of ML-enhanced 
scatterometry, as opposed to conventional RCWA. The 
second example involves a line trench in silicon with a pitch 
of 4 µm and a depth of 22 µm. The significant aspect ratio 
between the depth and critical dimensions presents a 
substantial challenge for RCWA simulations. 

 

A. Machine Learning Approach  

 
Initially, measured optical spectra are needed to determine 

the geometrical parameters of interest. Measurements in this 
work were carried out with a NOVA T600 MMSR tool, which 
has a vertical and an oblique incidence advanced 
scatterometry channels. The spectra consist of s-polarized (Rs) 
and p-polarized (Rp) reflection spectra collected from normal 
as well as oblique incidence channels with azimuth angles of 
0 and 90 degrees. 

In order to train the machine learning model, the collected 
reflectance spectra and reference measurement data, obtained 
from the RCWA method were used. We also incorporated 
external reference data such as inline Critical Dimension 
Scanning Electron Microscopy (CD-SEM) and cross-section 
(xSEM) measurements for cross-validation. NOVA software 
was used to build a ML model. Fig. 1 shows the ML model 
training scheme. The primary external references (used for 
model validation) are data from atomic force microscopy for 
the recess structure and xSEM data made at two locations per 
wafer for the line trench, respectively. For line trenches, in 
addition, the top widths of the trenches were measured at the 
same locations with inline CD-SEM.  



 

Fig. 1. ML model training scheme. Reflectance spectra are collected from 
several locations on each wafer in order to develop a RCWA model. 

The results are then further used to train the ML model. 

 

The trained model is a mathematical estimator, which 
gives the parameters of interest (POI) from measured spectra 
(without reference data) as shown in Fig. 2.  

 

Fig. 2. Machine learning model is deployed to obtain multiple parameters 

of interst from measured spectra.  

 

B. Recess Depth of a Silicon MOSFET Trench from RCWA 

Method and Optimization done with Machine Learning 

Method 

 

As a first example, recesses in poly-silicon were etched for 
a silicon trench MOSFET in 300 mm silicon wafers. A 
schematic image of the structures is shown in Fig. 3. Three 
groups with different etch conditions were prepared. In this 
case, both recess depth as well as sidewall oxide (SWO) 
thickness were adapted, to generate the variation matrix. The 
first group represents process of record (POR) wafers. For the 
second group, recess depth was varied by +/- 8%, while 
maintaining a consistent SWO thickness. Lastly, in the third 
group, we kept the recess depth unchanged but modified the 
process to vary the SWO thickness. Each group comprised of 
two wafers. 

 

 

 

 

 

Fig. 3. Schematic image of the recess structure where the recess depth is the 

parameter of interest. The oxide on the sidewall is shown in yellow 
color and the poly-silicon in magenta.  

 

At first, a RCWA method was developed and used to 
measure the recess depth. We have a substantial amount of 
experience with using the RCWA method for similar 
structures in the past [5]. However, the opening width to pitch 
ratio plays a significant role in determining the measurement 
sensitivity. If this ratio is below a certain threshold, then a 
robust measurement cannot be guaranteed. In this case, a 
suitable grating structure needs to be evaluated and used for a 
scatterometry solution. In this example, the relatively thick 
SWO in combination with a narrow recess opening width 
poses a challenge for this method. This challenge is evident in 
the recess depth measurement (13 sampling points per wafer) 
as shown in Fig.4. 

 

Fig. 4. Radial plot of the recess depth measured with RCWA based method. 
Wafer #1 is the POR, wafer #2 and wafer #3 represent one wafer each 

from the  second group. Finally wafer #4 and wafer #5 represent one 

wafer each from the third group.  

 

The radial plots for normalized recess depth in Fig. 4 
display the data of one wafer from each group. Wafer #1 was 
processed under POR conditions. Wafer #2 and wafer #3 
underwent a process variation to alter the recess depth by +/-
8%, respectively. However, one can notice the asymmetrical 
variation in recess depth for both wafers, wafer #3 being 
deeper than intended. Lastly, for wafer #4 and wafer #5, the 



process variation was implemented in such a way that only the 
SWO thickness was changed, while efforts were made to 
maintain the recess depth as close as possible to the POR 
target. As can be seen, the intended depth variation is 
noticeable which implies that the RCWA is capable of 
detecting the variation. We have ensured that the limits of the 
RCWA library are not violated. However, when the results are 
cross validated with SEM cross section data, particularly at 
wafer edges (e.g. last data points for wafers #2-#4 in Fig. 4), a 
mismatch between the RCWA measurement result and cross 
section data are observed. This correlation is shown in Fig. 
5(a), where a large spread is observed with R2 = 0.67. 
Subsequently, the ML approach was used to enhance the 
RCWA result. The measured spectra from all wafers were 
then re-evaluated using this ML model and an improved 
correlation has been demonstrated in Fig. 5(b) with R2 = 0.98.  

 

Fig. 5. Correlation plots between SEM cross section data and recess depths 
(normalized), (a) measured with RCWA and (b) after enhancing with 

ML approach. 

 

To test this ML enhanced RCWA approach, a new set of 
wafers were prepared and measured. This new DOE set 
contained the same variations as in the previous DOE. That 
implies the new set of wafers again contains POR wafers, 
wafers with recess depth variation while maintaining fixed 
SWO thickness as well as wafers where the recess depths were 
not adjusted but the SWO thickness was varied. Fig. 6 shows 
wafer maps (105 sites) from a wafer belonging to the third 

group with shallower recess depth. In the RCWA case (Fig. 6 
(a)), clear outliers are observed which are not observed when 
the RCWA is enhanced with ML (Fig. 6 (b)).  

 

Fig. 6. Wafermaps of recess depth (a) using RCWA and (b) when enhanced 

with ML.  

 

Finally, to carry out a cross validation, Atomic Force 
Microscopy (AFM) data were collected, but from fewer 
locations (13) on each wafer. We ensured that at those same 
positions, RCWA data were available. For this analysis, the 
recess depth and oxide thickness on the silicon mesa are added 
together, because only this combined depth can be obtained 
with AFM. Fig. 7 illustrates the correlation between the total 
depth measured using the RCWA method and the AFM results 
with R2 = 0.72. Again, the recess depth values are normalized. 
The data points lying far away from the linear fit represent 
outliers in recess depth measurement from the RCWA 
method.  

 

Fig. 7.  Correlation plot between AFM data and total depth measured with 

RCWA only (normalized). Outliers result from insufficient sensitivity 

of the RCWA method in a few cases. 

 

In contrast, the correlation between the ML enhanced 
RCWA data and AFM data have an improved coefficient of 
determination R2 = 0.91 (Fig. 8), emphasizing the superior 
performance of the combined approach. 



 

Fig. 8. Correlation plot between AFM data and total recess depth measured 

with ML enhanced RCWA approach (normalized). 

 

C. Top and Bottom CDs of 2D Line Trenches from RCWA 

Method and Optimization done with Machine Learning 

Method 

 
In the second example, five groups of silicon wafers were 

etched to have different sidewall angles for the line trenches, 
while keeping the depth on target. The first and second wafers 
had the largest deviation in trench side wall angle from POR 
of +/- 7%. The third and fifth wafers received an etch process 
variation of +/- 5% respectively. The fourth wafer in this DOE 
represents the standard process (POR). In this work, we focus 
on the top and bottom CDs, therefore, the trench depth data 
even though available, are not provided. 

A RCWA model was developed using spectra collected 
from normal as well as oblique scatterometric channels. Full 
wafer scatterometry measurements (93 sampling points per 
wafer) were performed. In this model, the depth, top CD and 
bottom CD are varied sufficiently to cover the variation 
observed in cross sections. Radial plots of the top CD from all 
5 wafers (wafer #1-5) are shown in Fig. 9 (a). However, 
outliers are observed which are positioned randomly for each 
wafer. Fig. 10 (a) shows the wafer map of top CD for wafer 
#5 with pronounced outliers at half radius and at the wafer 
edge. These are identified as artefacts from model 
interpretation rather than real outliers coming from the etch 
process. 

In the next step, our ML approach has been implemented 
to develop an enhanced scatterometry model and the collected 
spectra are analyzed with this model. The ML model was 
trained using reference RCWA model data for trench depth, 
top CD, and bottom CD. In total 65 reference data points (13 
sampling points per wafer) for each parameter were used to 
train a ML model. The trained ML model gives the top CD, 
bottom CD, and trench depth from measured spectra.  

The top CD results are discussed first.  Fig. 9 (b) shows a 
much smoother radial profile in comparison to the same data 
obtained with only RCWA model (Fig. 9 (a)).  The improved 
radial profile is also observed in the wafer map (Fig. 10 (b)). 
Top CD values of line trenches decrease from wafer center, 

reach a plateau at 20-50 mm wafer radius, and increase 
towards wafer edge. 

 

 

Fig. 9. Radial plot of normalized top CD for 2D line trenches obtained with 
RCWA (a) and ML (b) method for 5 wafers. There are outliers 

observed for top CD obtained with the RCWA method. 

 

Fig. 10. Wafer maps of top CD for 2D line trenches obtained with RCWA 

(a) and ML (b) method for wafer #5. Outliers are observed for top CD 
which were obtained exclusively with the RCWA method (a). The ML 

enhanced RCWA method is able to remove these outliers (b).  

A similar experiment has also been carried out for bottom 
CD. Measuring the bottom CD for such trenches is very 
challenging and building a suitable RCWA model requires 
large computational power. Despite that, a RCWA model was 
developed and the radial plot for normalized bottom CDs is 
shown in Fig. 11 (a). In the radial plot for the bottom CDs, the 
intended variation is somewhat observed. The bottom CD of 
wafer #4 which was etched with POR condition lies at the 
center, is shown with black squares. Bottom CDs of wafer #1 
and 2 which received the largest process variation of +/- 8 %, 
are visible at the top and bottom of the graph, respectively. 
Finally, data from wafer #3 and wafer #5, which received a 
process variation of +/- 5% are observed just above and below 



wafer #4. However, outliers in the bottom CD are also 
observed, particularly around half-radius for wafer #5 and at 
the wafer edges for all wafers. These outliers are attributed to 
the artefacts from model interpretation.  

Again, by using the ML enhanced scatterometry method, 
the results show improvement in uniformity and stability (Fig. 
11 (b)).  In the radial plot for the bottom CDs, the variation is 
nicely observed, the same color scheme as in Fig. 11 (a) is 
used. Radial plots of bottom CDs for wafer #3 and wafer #5 
with +/- 5% process variation are closer to that for POR wafer 
#4. The radial plots for bottom CDs for wafer #1 and wafer #2 
with +/-8 % process variation are at the top and bottom of the 
graph respectively. The bottom CD increase from wafer center 
up to 120 mm wafer radius and decreases slightly again 
towards the wafer edge. The drop in the bottom CD at the 
wafer edge has been confirmed with xSEM images. This is 
significantly smaller in comparison to the data obtained with 
RCWA method. Finally, 10 repetitions of the measurements 
were carried out and the standard deviation was calculated. 
The standard deviation calculated with our ML enhanced 
method was half of the standard deviation calculated with the 
RCWA method. This improved repeatability can enhance 
tool-to-tool matching as long as there is no significant offset 
between them. An offset is usually tool hardware dependent 
and does not originate from the used model for interpretation.   

 

  

Fig. 11. Radial plot of normalized  bottom CD for 2D line trenches obtained 

with RCWA  (a) and ML method (b) for 5 wafers. Wafer #4 was etched 

with the POR process. Wafers #1 and wafer #2 were etched to have the 
largest and smallest bottom CDs (+/- 8%). Wafers #3 and #5 were 

etched to have slightly larger and smaller bottom CD than the POR 

wafer #4. 

Next, cross section SEM measurements (2 points per 
wafer, center and edge) were performed at the same wafer 
locations as optical measurements in order to test the ML 

model. The bottom CD values obtained with the ML enhanced 
RCWA method agree well with the xSEM data (not used in 
the training set), with a correlation R2 = 0.89 (Fig. 12).  In our 
previous publication [2], we presented bottom CD 
measurement of deep trenches (depth > 40 µm), which was 
calculated using exclusively a ML model. In this case, it was 
not possible to develop a solution with RCWA. The ML 
model was developed using measured spectra and external 
reference data which were primarily xSEM data.  

 

Fig. 12. Normalized bottom CD obtained from xSEM is plotted versus 

scatterometry results using the ML method. The xSEM data were not 
used in the training set. 

 

In order to test the ML model for top CD, trench top CD 
were measured using a CD-SEM metrology tool (13 sampling 
points per wafer). CD-SEM measurements were performed at 
the same wafer locations as scatterometry measurements.  

 

 

Fig. 13. Normalized top CD of trenches from the 5 wafers obtained from CD-
SEM is plotted versus scatterometry results using the ML method. The 

CD-SEM data were not used in the training set. 

 

Normalized top CD values obtained with the scatterometry 
enhanced ML model agree well with the CD-SEM data (not 
used in the training set), with a correlation R2 = 0.87. The 
correlation plot for top CD obtained from the ML model and 



CD-SEM reference data, which was not part of the training 
set, is shown in Fig. 13 for the 5 DOE wafers. 

 

II. SUMMARY AND CONCLUSIONS 

 
By using two vastly different examples, a recess in trench 

MOSFET and a 2D line trench, we have demonstrated the 
advantage of using an additional machine learning approach 
over only the conventional RCWA method. The ML enhanced 
RCWA method shows improved radial profiles for the recess 
depth of the trench MOSFET structure. The results have been 
independently cross validated with AFM measurements. A 
similar improvement was also observed for the top and bottom 
CD values of line trenches when traditional RCWA was 
augmented by the application of ML. These examples 
highlight how combining traditional methods with emerging 
technologies can lead to more reliable, and comprehensive 
results. The two structures could also be tackled using pure 
ML approach. However, this requires a significant number of 
external references such as xSEM images for developing a 
robust ML model. By using the ML enhanced RCWA method, 
the number of external references can be reduced.  

In production environment, throughput is an important 
parameter. Therefore, it is imperative to address this when a 
combination method, as presented in this paper, is being used. 
For the two examples shown in this work, the measurement 
condition is not changed while using the ML enhanced 
RCWA approach and hence, the throughput is unaffected. 

From our observations, the physical model remains a 
suitable tool for predicting the geometrical values. However, 
when complexity is increased, either the physical model 
becomes too complex or the sensitivity is compromised, 
leading to instability in simulation results. In a production 
environment, new complexities are frequently introduced and 
it is impossible to meet all the requirements for a suitable 
RCWA method (new structures, library calculation time etc.) 
at a fast pace. In these situations, ML can provide a valuable 
solution. It is equipped to enhance RCWA, improving the 
stability of measurement results in a shorter amount of time. 
Therefore, while traditional methods like the RCWA remain 
relevant, the integration of ML provides a promising and 
effective way to handle increasing complexity and maintain 
high productivity.  
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